讲座时间:2019-6-13 14:00-15:30
讲座地点:闵行校区生物药学楼树华多功能厅
主 讲 人:中科院深圳先进技术研究院合成基因组学研究中心主任 戴俊彪研究员
主办单位:必赢线路检测3003no1
联 系 人:邢海娜 (xinghaina@sjtu.edu.cn)
主讲人简介:
戴俊彪,中国科学院深圳先进技术研究院研究员,博士生导师。中国科学院深圳先进技术研究院合成生物学研究所副所长、合成基因组学研究中心主任。国家杰出青年科学基金获得者,2018年谈家桢生命科学创新奖获得者,英国皇家学会牛顿高级学者基金获得者,入选科技部中青年科技创新领军人才。本科毕业于南京大学基础学科教学强化部,硕士毕业于清华大学生物技术与科学系,2006年于美国爱荷华州立大学(Iowa State University)获得博士学位,2006-2011年在美国约翰霍普金斯大学医学院(Johns Hopkins University School of Medicine) 从事博士后研究,2011-2017年担任清华大学生命科学学院研究员。主要研究方向是开发基因和基因组的合成、组装及转移技术,通过基因组的设计构建解析基因组功能,并进行合成生物的改造和优化等。戴俊彪研究员是人工合成酵母基因组国际计划(Sc2.0)和基因组编写计划(GP-write)的中方主要参与者,牵头发起了“国际基因组编写计划•中国(GP-write China)”国际合作项目,2017年3月在《科学》杂志上以封面和专刊的形式发表了五篇染色体合成相关文章。
内容简介:
New technologies to synthesize DNA, facilitated by methods exploiting synthesis of oligonucleotides on microarrays for example, provides a great opportunity to completely redesign the entire genome of an organism. Together with several other groups worldwide, we aim to re-synthesize a designer eukaryotic genome, Sc2.0. In my lab, a 976,067-base pair linear chromosome, synXII, was designed and assembled using a two-step method, producing a functional chromosome. The ribosomal gene cluster (rDNA) on synXII is retained during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, commonly used as the molecule barcode of a species, are swapped to generate a Saccharomyces strain that would be identified as Saccharomyces bayanus. Furthermore, as a novel inducible system implemented in the synthetic chromosomes, SCRaMbLE is designed to generate diverse genotypes and phenotypes by massive chromosome rearrangements. We have designed a reporter of SCRaMbLEd cells using efficient selection, termed ReSCuES, based on a loxP-mediated switch of two auxotrophic markers. We show that all randomly isolated clones contained rearrangements within the synthetic chromosome, demonstrating high efficiency of selection. Using ReSCuES, we illustrate the ability of SCRaMbLE to generate strains with increased tolerance to several stress factors, such as ethanol, heat and acetic acid. In addition, by analyzing the tolerant strains, we are able to identify ACE2, a transcription factor required for septum destruction after cytokinesis, as a negative regulator of ethanol tolerance. Collectively, our work not only offers a new avenue of decoding the yeast genome through intelligent design followed by chemical synthesis, but also demonstrates our ability to reprogram the genome for future applications.
请感兴趣的老师于2019年6月13日8:00之前报名。
报名方式:
点击以下网址
https://mp.weixin.qq.com/s/PBq2v0y0PB7Hg131MiK9EA
2、扫描下方二维码报名